loading
City:

Thunderstorm Probability

The Lifted Index is a measure of atmosphere's stability (or instability) and Meteorologists use it to determine the thunderstorm potential. It doesn't accurately predict the intensity of every single storm, but it is a useful tool to estimate the atmosphere's potential to produce severe thunderstorms.


"Parcels" (or bubbles) of air start to rise on their own if they are warmer than the surrounding air. This process is called convection. Consider an air parcel as it begins to rise through the atmosphere after being heated by the sun and the warming ground. The Lifted Index is defined as a rising parcel's temperature when it reaches the 500 millibars level (at about 5,500m or 18,000 feet asl), subtracted from the actual temperature of the environmental air at 500 millibars. If the Lifted Iindex is a large negative number, then the parcel will be much warmer than its surroundings, and will continue to rise. Thunderstorms are fueled by strong rising air, thus the Lifted Index is a good measurement of the atmosphere's potential to produce severe thunderstorms.


The Lifted Index (LI)
RANGE IN K
COLOR
AMOUNT OF INSTABILITY
THUNDERSTORM PROBABILITY
more than 11
B LUE
Extremely stable conditions
Thunderstorms unlikely
8 to 11
LIGHT BLUE
Very stable conditions
Thunderstorms unlikely
4 to 7
GREEN
Stable conditions
Thunderstorms unlikely
0 to 3
LIGHT GREEN
Mostly stable conditions
Thunderstorm unlikely
-3 to -1
YELLOW
Slightly unstable
Thunderstorms possible
-5 to -4
ORANGE
Unstable
Thunderstorms probable
-7 to -6
RED
Highly unstable
Severe thunderstorms possible
less than -7
VIOLET
Extremely unstable
Violent thunderstorms, tornadoes possible


For example, if the rising parcel has an temperature of -5°C when it reaches 500 millibars, but the actual temperature at 500 millibars is -11°C, then the lifted index is -6 Kelvin (or K) indicating the potential for strong thunderstorms. However, there are no specific threshold values that correlate lifted index to thunderstorm severity. In general a negative Lifted Index indicates an unstable atmosphere, so the larger the negative number, the more unstable the atmosphere is, the stronger a thunderstorm could be. Lifted index values rarely go below -7.


Now, find out about the convection and thunderstorm probablility across the British Isles yourself. Have a look at WeatherOnline's new Lifted Index maps. The table above will help you to 'read' the map and to estimate the thunderstorm risk.
Important ! The Lifted Index is not a measured quantity, it is only a parameter that is theoretically derived. If the Lifted Index is favorable for severe storms but other conditions are not met, then no storms may form at all.


Related features:
Convection
The Lifting Index Forecast Maps
Up-tp-date Lightning Map


Add to social bookmarking:  | more |
A is for Air
Accessory clouds
Advection
Air masses and their sources
Air-mass Thunderstorm
Alpine Glow
Altocumulus
Anticyclone
Atmosphere - Diagram
Aurorae - Northern Lights
Average rainfall over England and Wales
Azores High
Banner Cloud - the peak's flag
Beaufort Scale
Blizzard
British Weather Terms
Brocken Spectre
Bubble High
Burning Time
CAPE - Convective Available Potential Energy
Cap cloud
Cc floccus
Cc lacunosus
Cc stratiformis
Cc undulatus
Central England Temperature
Centres of action
Ci fibratus
Ci radiatus
Ci spissatus
Ci uncinus
Ci vertebratus
Cirrocumulus
Cirrostratus
Cirrus
Clocks go Back from BST to GMT
Cloud classification
Cloud seeding
Cloud species
Cloud streets
Cloud types (genera)
Cloud variety
Clouds - sentry of the sky
Cold low
Comma Cloud
Comma Cloud
Convection
Coriolis effect
Corona
Crepuscular rays
Cut-off low
Dew Point
Dew
Discovery of the Jet Stream
Doppler radar
Drifting snow - blowing snow
Drought
Earth's Atmosphere
Easterly wave - the Hurricane's cradle
El Nino
Föhn (foehn) wind
Föhn wall
Flash Flood
Fog and Mist
Fogbow
Forecasting weather
Frost hollow
Fujita Scale Statistics
Fujita Tornado Scale
Funnel cloud
Genoa Low
Geostationary Satellites
Geostrophic Wind
Glaze and Black Ice
Glory
Grass Minimum Temperature
Gustnado
Hail
Hailstorms in Britain
Highs and Lows and Winds
History of Hurricane Names
Hoar Frost
Humidity
Inversions
Isobars on surface maps
Jack Frost
Jet stream cirrus from space
Katabatic winds
Key to our weather symbols
Lake-effect snow
Latent Heat
Levanter cloud
Millibar and hectopascal
Mirages
Mizzle
NOAA satellites
Nimbostratus
North Atlantic Drift (Gulf Stream)
Polar Orbiting Satellites
Polar low - the arctic hurricane
Precipitation Map
Radiosonde
Rain gauge
Rime
Roll cloud
Rotor cloud
Saffir-Simpson scales
Sc duplicatus
Sc perlucidus
Sc undulatus
Shelf Cloud
Sometimes a bit fishy
Sounding
Southern Oscillation
St. Swithun's Day
Standard Reference Period
Stevenson Screen
Stratocumulus
Stratosphere
Sun pillar
Supercooled clouds
Surface wind
Swell
TORRO
Thermocline
Thunderstorm Probability
Thunderstorms
Tornado Alley
Troposphere
Troposphere - Diagram
UV Index
Ultraviolet radiation
Virga or Fallstreak
What Makes Northern Lights Happen?
What does it mean?
Why Skies are Blue
Why Thunder Rumbles
World Meteorological Organisation (WMO)