loading
City:

Thunderstorms

Thunderstorms are local storms accompanied by lightning and thunder and a variety of weather phenomena, such as heavy rain, hail or - in winter - snow, high winds and sudden temperature changes. Thunderstorms originate when intense heating causes a parcel of moist air to rise from the earth's surface into upper levels of the atmosphere, a process called convection. Thunderstorms are therefore also known as convective storms.

At any given moment, it is estimated there are 2000 thunderstorms in progress around the world. They occur most frequently in the tropics but are also common in the mid-latitudes.


Thunderstorm ingredients:

Thunderstorms need an ample supply of moisture, preferably in the lower and mid-levels of the atmosphere, as they are mainly powered by latent heat released as water vapour condenses.

Thunderstorms need unstable air, a temperature profile with warm air near the ground and cold air aloft. When an air parcel is given an initial push upwards it will continue rising without additional force. Thus thunderstorms are more likely in the spring and summer than in the fall and winter. The sun warms the ground, which warms the air near the ground. In spring the air aloft retains its winter cold and thus will be more unstable than in the fall when the air aloft retains its summer warmth.

Thunderstorms need a source of lift. This can be (1) differential heating when air near the ground is warmer than in upper levels, (2) orographical effects when air has to rise to pass a mountain ridge, (3) frontal boundaries when air masses of a different temperature clash, (4) drylines when air masses with differing humidity but similar temperatures clash and (5) Land/Sea breezes. Thunderstorms can get started by even faint air boundaries and thus sometimes seem to pop up out of the blue sky.


Thunderstorms are often accompanied by severe weather and lightning is among the biggest weather killers. However, less then one percent of all thunderstorms produce hail bigger than the size of a golf ball and/or strong downburst winds. Only a small fraction of severe storms actually produce tornadoes or waterspouts.


No place in Europe is completely immune from the threats of thunderstorms. Severe weather can strike at any place, and at any time. Thunder and lightning occur simultaneously but thunder is heard later than lightning is seen, as light travels faster than sound. A good measure of distance from a storm is 1 mi (1.6 km) for every 5 seconds between flash and thunder.


Related features and links:
Hailstorms in Britain
The Lifted Index - Thunderstorm Probability
The Lifted Index (forecast maps)
Where Lightning Strikes - Congo Under Fire
Sferics - The Observed Lightnings Now!


Add to social bookmarking:  | more |
A is for Air
Accessory clouds
Advection
Air masses and their sources
Air-mass Thunderstorm
Alpine Glow
Altocumulus
Anticyclone
Atmosphere - Diagram
Aurorae - Northern Lights
Average rainfall over England and Wales
Azores High
Banner Cloud - the peak's flag
Beaufort Scale
Blizzard
British Weather Terms
Brocken Spectre
Bubble High
Burning Time
CAPE - Convective Available Potential Energy
Cap cloud
Cc floccus
Cc lacunosus
Cc stratiformis
Cc undulatus
Central England Temperature
Centres of action
Ci fibratus
Ci radiatus
Ci spissatus
Ci uncinus
Ci vertebratus
Cirrocumulus
Cirrostratus
Cirrus
Clocks go Back from BST to GMT
Cloud classification
Cloud seeding
Cloud species
Cloud streets
Cloud types (genera)
Cloud variety
Clouds - sentry of the sky
Cold low
Comma Cloud
Comma Cloud
Convection
Coriolis effect
Corona
Crepuscular rays
Cut-off low
Dew Point
Dew
Discovery of the Jet Stream
Doppler radar
Drifting snow - blowing snow
Drought
Earth's Atmosphere
Easterly wave - the Hurricane's cradle
El Nino
Föhn (foehn) wind
Föhn wall
Flash Flood
Fog and Mist
Fogbow
Forecasting weather
Frost hollow
Fujita Scale Statistics
Fujita Tornado Scale
Funnel cloud
Genoa Low
Geostationary Satellites
Geostrophic Wind
Glaze and Black Ice
Glory
Grass Minimum Temperature
Gustnado
Hail
Hailstorms in Britain
Highs and Lows and Winds
History of Hurricane Names
Hoar Frost
Humidity
Inversions
Isobars on surface maps
Jack Frost
Jet stream cirrus from space
Katabatic winds
Key to our weather symbols
Lake-effect snow
Latent Heat
Levanter cloud
Millibar and hectopascal
Mirages
Mizzle
NOAA satellites
Nimbostratus
North Atlantic Drift (Gulf Stream)
Polar Orbiting Satellites
Polar low - the arctic hurricane
Precipitation Map
Radiosonde
Rain gauge
Rime
Roll cloud
Rotor cloud
Saffir-Simpson scales
Sc duplicatus
Sc perlucidus
Sc undulatus
Shelf Cloud
Sometimes a bit fishy
Sounding
Southern Oscillation
St. Swithun's Day
Standard Reference Period
Stevenson Screen
Stratocumulus
Stratosphere
Sun pillar
Supercooled clouds
Surface wind
Swell
TORRO
Thermocline
Thunderstorm Probability
Thunderstorms
Tornado Alley
Troposphere
Troposphere - Diagram
UV Index
Ultraviolet radiation
Virga or Fallstreak
What Makes Northern Lights Happen?
What does it mean?
Why Skies are Blue
Why Thunder Rumbles
World Meteorological Organisation (WMO)